
CMP407 – Audio 
Programming
Presentation – Ollie Hall



Audio techniques used in this project:
✓ Use of audio that you’ve recorded and edited yourself in an appropriate context.

✓ At least three basic audio effects in an appropriate game context.

✓ Use of compressed audio file formats or network streaming of compressed audio.

✓ Integration with audio middleware or audio facilities within a game engine.

✓ Use of digital music (sampled or sequenced) that reacts dynamically to game events.

✓ Use of spatial audio techniques to reproduce real-world environments.

✓ Use of dynamic audio techniques for sound effects or music.



The Application
• Created in Unity, using Wwise as middleware. 

• A level built as an extension to a game I made in a game jam.

• Fellow student Ben is working on another level for the same game.

• All audio implementation is my own.

•A couple of sounds may be shared within both of our projects:

• Footstep audio

• Elevator audio

• Light switching sound audio

• Object pick-up audio

• The player finds themselves accidentally discovering a secret experimentation chamber, and 
has to solve puzzles to escape as they are tormented by the chamber’s odd caretaker.



Use of audio that you’ve recorded and 
edited yourself in an appropriate context.

-Recordings of my voice. Pitched down using Audacity and a basic 
high-pass filter and distortion applied through my C++ application. 

- Piece of music created using Mixcraft 9 Pro Studio and a MIDI 
keyboard, used within a Blend Container in Wwise (more on this 
later).

- Recording of slow breathing, low-pass filter applied through my 
C++ application and pitched down in Wwise.



Integration with audio 
middleware or audio 
facilities within a game 
engine.

▪Wwise is used as middleware for my 

submission.

▪The event-based nature of Wwise 

makes it very useful when interfacing 

with Unity and Unity’s GameEvents.

▪I decided to use Wwise only and not 

Unity’s in-built audio handling system 

as it would create unnecessary 

complications between Wwise and 

Unity – however, Unity provides 

visualizations of attenuation and 

positioning that you cannot use with 

Wwise.



Integration with audio middleware or audio facilities 
within a game engine.

A simple script that can be attached to an object which calls a specified event.

The public function CallEvent() can be called from any event within the game, allowing 
Wwise events to be played in tandem with the level’s event system.

Apart from this script, there are many other uses of Wwise events in code, and other 
functions such as setting RTCP values.



At least three basic audio effects in an appropriate 
game context.

A Wwise distortion effect with custom 
settings to distort a breathing sound 

effect to sound less human.

“RoomVerb” effects added to multiple 
auxiliary buses in Wwise. These create 
an artificial reverb effect for any object 

within the reverb zone that emits sound.

For many of the sound effects that are 
reused, I have applied pitch randomization 
so the sound is slightly different every time 
without being too noticeable. This makes it 

feel more natural.



At least three basic audio effects in an appropriate 
game context.

I used a basic distortion offline effect to provide a very slight 
distortion to my voice lines so it sounds like it’s coming through an 

old television

I used a basic offline high-pass filter for the 
voice lines coming through the television, 
and a low-pass filter for a slow breathing 

sound effect to remove the higher range and 
make it sound inhuman.



Use of compressed audio file formats or network 
streaming of compressed audio.
The Wwise middleware is used to handle audio file compression for this 
project.

The level has sound effects for a range of gameplay elements and objects.

Most sound effects are under a second long and range from ~20kb to 
~750kb. Due to the small size and frequent use, these effects are not 
compressed, with Wwise handling them as PCM formats. This means they 
require very little CPU processing power and RAM allocation as they do not 
need to be decompressed.

Other sounds within the game such as the music, dialogue and ambient audio 
are compressed with Opus, a lossy audio coding format. 

Due to the less frequent loading requirements of these audio files, and larger 
length and file size, compressing them allows for a reduction in project size 
without the drawbacks of being too CPU intensive (as compressed files need 
to be decompressed when they are played).

Ambient effects in the level are compressed with a lower quality than other 
audio files, due to them being less audible and a high file size.

The current conversion settings.
Ambient, Dialogue and Music settings are 

Opus, and Default is PCM



Use of digital music (sampled or sequenced) that 
reacts dynamically to game events.

A mix was created in Mixcraft 9 Pro Studio, and a MIDI keyboard was used to 
assist creation.



Use of digital music (sampled or sequenced) that 
reacts dynamically to game events.

Each track within the mix was separately exported as a .wav file. These separate 
tracks were then imported in Wwise/Unity.



Use of digital music (sampled or sequenced) that 
reacts dynamically to game events.

The audio files were put in a blend container. This contains three 
blend tracks: 

- The base music loop

- The drum loop

- The cello loop

These blend tracks are linked to a parameter I’ve suitably named 
“MusicParameter”.

Depending on the value of MusicParameter (0-100), the drum track 
changes, and volume of the base track and cello track changes.

The base loop (second blend track) uses an inverted s-curve for the 
volume so it remains steady in the middle before it increases again.

This allows for dynamic music to enhance the intensity of the 
experience based on the situation.



Use of digital music (sampled or sequenced) that 
reacts dynamically to game events.

The “MusicParameter” value of the blend container can be changed from within a script in Unity 
with this line:

AkSoundEngine.SetRTPCValue(Parameter Name, Value, Current GameObject);

As the game loop is not yet finished, the dynamic music is not yet implemented as intended for 
the finished level.



Use of spatial audio techniques to reproduce real-
world environments.

For the mood of my game, I considered it very important that 
almost every sound the player hears seems as though exists 
within the space.

Certain moments in the level use spatialization to create an 
artificial binaural effect, with the player hearing breathing 
behind them, moving to the left and right.

I used Wwise for audio spatialization. It has extensive options 
for customising aspects of spatialization such as attenuation, 
orientation and even diffraction.

An example of attenuation in my level

The Positioning tab in Wwise. I have enabled position-
based 3D spatialization and set up attenuation for my 

spotlight sound effect.



Use of spatial audio techniques to reproduce real-
world environments.
I set up Reverb Zones within my level. Any object within these 
zones which have a trigger collider and a Rigidbody can interact 
with these zones.

When these objects emit a sound within the reverb zone, the 
audio is modified to provide a reverb effect that matches the 
Wwise settings for that zone. This allows me to provide different 
reverberation effects for different spaces, and even use reverb 
zones for dramatic effect.

The component AkEnvironment is applied to the box colliders 
that are the “reverb zones”. This component is linked to the 
Auxiliary Bus for that area. 

The Auxiliary Bus holds the reverb effect for that reverb zone 
but can contain many other effects ranging from distortion to 
compression and even pitch-shifting.

The reverb zones and portals within my level 
in the Unity editor

The Auxiliary Buses for my level. Final build 
may include more.



Use of spatial audio techniques to reproduce real-
world environments.
AkEnvironmentPortal is also used within my level between 
each reverb zone / AkEnvironment.

This allows me to connect the reverb effects in different 
environments to allow for a smooth, seamless transition 
between reverb zones.

The AkEnvironmentPortal determines the strength of the 
effect from each connected AkEnvironment by the 
distance from the player, so if the player is nearer to the 
corridor area, the corridor’s reverb zone effect will be 
more prominent.

The AkEnvironmentPortal component within Unity. This 
one is connecting a small corridor with the escape room 

which has more reverb.

The portal linking my small corridor and escape room 
reverb zones.



Use of dynamic audio techniques for sound effects 
or music.

The player can interact with a radio within the level.

This radio can be turned on and the frequency can be 
tuned using two dials.

Certain frequencies can play pieces of music such as 
Vera Lynn’s “We’ll Meet Again” or Flanagan and 
Allen’s “Run Rabbit Run”

The player needs to find a specific frequency that 
contains a clue for the player to escape.



Use of dynamic audio techniques for sound effects 
or music.

The radio effect is created through a Blend Container with four 
different Blend Tracks.

The tracks are linked to a Game Parameter named “RadioFrequency”. 
This is set from code within the “RadioControl” script in Unity.

The first blend track is a layer of white noise / static which changes 
pitch, high pass and volume based on frequency.

The second track is another layer of static, with a different white noise 
effect.

The third track is a third layer of static, but this layer slightly changes 
volume, pitch and high pass depending on frequency.

The fourth layer are the “stations”, certain songs and the voice lines 
with the clue are played if the parameter “RadioFrequency” is on 
them. 

The volume, high pass and pitch changes based on how finely the 
player is “tuned in”.



Use of dynamic audio techniques for sound effects 
or music.



Audio Credits

Film static 1 – joedeshon

Film static 2 – InspectorJ

Radio power button – LexzachGames

Ceiling Fan switch – InspectorJ

Camera – tmkappelt, kwahmah_02

Air vent – livvy0221

Lock dial spin – egomassive

Lock metal groan – Crinkem

Lock metal clang – jasonLON

Lock metal thud – zaneclampett

Lock unlock – sergiosmarinis

Fluorescent lamp – jacekksiazek

Standing up – kupp2

Sitting down – FreqMan

Sliding door – stereostereo, musicandsound, beerbelly38

Video glitch sound 1 – Free-Rush

Video glitch sound 2 – syn2x-v0

Video glitch sound 3 – tadaizm

Video glitch sound 4 – AmicaSys

Spotlight - Deathscyp

Video background ambience – AniCator

Elevator descend – Robinhood76

Elevator door open - waxsocks


