
Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

1

DES310 Portfolio

Ollie Hall 1700066 - Programmer

‘Uncovered’ by Red Ink

Team 10 – Society of Antiquaries of Scotland

Uncovered was a fascinating project in collaboration with the Society of Antiquaries of

Scotland. I worked on Programming, Animation, UI Implementation and contributed towards

some 3D Modelling. I also produced the Teaser Trailer.

This project enabled me to develop my experience in C# and Unity as well as learning new

programming skills, working effectively within a team, helping to manage a project and all

the complex elements it involved.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

2

Contents

Research .. 4

Project Work ... 8

Concept Development ... 8

Prototyping .. 10

Player Movement Prototyping .. 10

Artifact Interaction System Prototyping .. 11

Development Work... 13

Player Movement .. 13

Physics vs Translation.. 13

Dealing with Verticality .. 13

The CharacterController component .. 15

Dealing with gravity ... 16

Artifact Interaction .. 17

Controls .. 17

Overview of system .. 17

Finding an artifact .. 18

Entering Interaction ... 19

Rotating an artifact .. 20

Points of Interest ... 22

The Drone .. 23

Drone Movement ... 23

The Drone Controller .. 24

Drone Signal ... 25

Artifact Detection ... 26

Drone Audio ... 27

Animating the Tools .. 28

The Specialist Page .. 30

Changing the Design .. 30

Functionality ... 31

The Journal .. 32

Creating the Journal .. 32

The Tab System ... 32

The Inventory Page .. 33

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

3

The Information Page ... 34

The Site Page .. 35

Implementing settings into the Settings Page ... 36

Game Mode System ... 36

The Popup System ... 37

Types of Popups.. 37

The Queue System ... 40

Pausing the Game .. 41

Altering the Slab System ... 42

Improving the Top Layer ... 42

Highlighting Slabs .. 43

Digging Particles ... 43

Dig Progress Indicator .. 43

Blender Rocks .. 44

Main Menu ... 44

Improving the Map.. 45

Occlusion Culling and Lighting ... 46

Creation and Modification of terrain .. 46

AudioManager ... 47

The Trailer .. 47

References ... 48

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

4

Research

As our client has no experience in the gaming industry, we could not reference them for our work, but instead

used our own inspiration combined with their education to create an archaeological experience which is both

educational and gamified.

We kept in communication with the correspondent from the Society of Antiquaries of Scotland, Jeff Sanders,

to ensure that our game was accurate enough to mirror real archaeology and that it would showcase the best

of the sector. We were made aware of some of the stigmas attached to the archaeology community such as

that of “treasure hunting” spawned form media such as Indiana Jones or Tomb Raider.

After discussing the platform and demographic for our game, the team concluded that we were going to

make a PC game for students between the age of 12 and 20 who have an established interest in archaeology.

We initially were open to providing controller support for the game so that the player could use a gamepad to

play, but as the UI systems built up, we realised that it wouldn’t be feasible for our scope of the game and the

time we had.

Although the idea for the game was rather unique, the individual mechanics that make it up were heavily

inspired from other games:

Within our game, the player can use a trowel or a shovel to dig up dirt to uncover artifacts. To achieve this,

Ben came up with the idea of a grid of “slabs” that could be generated, and the player could dig these slabs to

deform the terrain and find objects underground. This was inspired from Minecraft’s its iconic digging

mechanic.

Minecraft (2011) - Digging dirt blocks with a shovel

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

5

Digging was always going to be at the centre of our game – the team took a trip to Edinburgh to speak to

John Lawson, an Archaeology Officer, to discuss and learn the dig process, precautions and practices. When

doing research for animating the tools, I looked up videos of archaeological development using trowels and

shovels.

The “Artifact Interaction Mode” within our game is heavily inspired from other games – the player can look

at an artifact and pick it up, rotating it to examine it and uncover details about the object. The visuals of this

mode were based on that of Resident Evil 7 (2017). The “Point of Interest” system where you uncover

information is inspired from the “Relic Viewer” in Tomb Raider (2013), where the player must rotate artifacts to

uncover secrets.

The Relic Viewer in Tomb Raider (2013)

Object inspection in Resident Evil 7 (2017)

The Artifact Interaction System in the final build of Uncovered

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

6

The Drone mechanic is an important part of our game, and tackling the idea of the drone’s controls,

movement and purpose were made easier by games that have already achieved great Drone systems, such as

Watch Dogs 2 (2016) and Call of Duty: Warzone (2020) which both have the player control the drone to survey

their surroundings. The controls for the drone were based on the latter game, as I found the movement to be

satisfying and simple. Other aspects of the Drone, such as signal range were based on Watch Dogs 2 (2016).

Creating the Player Movement system was one thing, but making it feel somewhat realistic and smooth was

another challenge. To solve this, I added head bobbing to the movement, and used the animation of the tools

to represent movement and weight.

The feeling of head bobbing was inspired by that of Kingdom Come: Deliverance (2018), as the head bobbing

is mostly horizontal, emphasising the left and right foot stepping in alternation.

Overwatch (2016) was a great inspiration for the animation of tools as it conveys character, weight and speed

entirely through the animation of the weapons as the character moves.

The Quadcopter in Watch Dogs 2 (2016)

The drone in Call of Duty: Warzone (2020)

The Drone Mechanic in the final build of Uncovered

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

7

The team decided to make the majority of the game’s User Interface diegetic – a Journal that the player writes

notes to and can refer to. This adds to the immersive experience we set out to achieve. Notable inspirations

for this idea come from The Elder Scrolls IV: Oblivion (2006) and Uncharted 4: A Thief’s End (2017).

I used the YouTube channels of Jason Weinnman and Sebastian Lague to both inspire me and help me learn

better practices in Unity and C#.

Overwatch (2016) conveys character through the animation cycles of the characters’ weapons

Inventory screen in The Elder Scrolls IV: Oblivion (2006)

The journal in Uncharted 4: A Thief’s End

The Information page of the Journal in Uncovered

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

8

Project Work

Concept Development

In the first weeks as we were coming up with ideas for the game and prototyping them, I was communicating

constantly with designers about their vision and ideas for the game to ensure I was on the same “mental

wavelength” as them – I believed that as a programmer it was important that I do my best job to bring the

team’s vision into reality. This was also important as I had to plan the structure of the game’s scripts and

functions to suit the design of the game, and as programmers we had to ensure that the idea was feasible for

us to work on at our current level of skill and experience.

We used methods to ensure our ideas were consolidated and unanimous within the team by we noted down

our trains of thought for specific mechanics such as the Dig Site Generation System and even the entire game

loop. After writing this down, we would discuss what we had written and point out any discrepancies. This

method even resulted in improved designs from people mistaking parts of the mechanic, with the mistake

being a better idea. This was overall a very cooperative and production method of ensuring the team were

comfortable with the ideas and designs of the game we were working to create.

Every week a different member of the team wrote meeting minutes . We did this for the entire duration of

development, meaning we have a clear document containing what each team member was working on at the

time, and our discussions for changes, additions and improvements to the game.

A snippet of one of the meeting minutes I wrote midway through development

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

9

On top of this we had an asset list that contained the assets we needed to make, their priority (required for

Minimum Viable Product, Surplus to Minimum Viable Product, and Stretch Goals), the date of completion and

production notes. This was important so that each member of the team could keep track of each other to

ensure a smooth development process.

My section of the Asset List – Assets were added as we were developing the game.

I kept to a production schedule created by the designers to ensure development was

smooth and constant

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

10

Prototyping

Player Movement Prototyping

I started my development on the game by prototyping the Player Movement System and Artifact

Interaction System.

For the Player Movement System, I decided to avoid using Unity’s pre-made assets and scripts from the

“Standard Assets” package, as I wanted to make a custom First-Person Controller that I could fully understand

and tweak to fit the game. Mechanics such as jumping, sprinting and crouching were never intended to be in

the game, so a custom script could be as simplified as I needed. The system went through many iterations and

changes which I will cover in development work, but it was important that for the basis of the game the

movement felt freeing, smooth and controlled.

I designed the Player Movement script so that it could be easily accessed by the designers, and each relevant

value could be tweaked within a clamped range:

The designers used this inspector to investigate the Player Movement to find the best values possible, and

recorded them in a document:

The Player Movement script in the Unity Editor inspector tab.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

11

Artifact Interaction System Prototyping

The Artifact Interaction System was designed for the player to have the option to view the artifact up-close

when they have found it – this mechanic went through a few design changes that I suggested and pushed to

be included, such as the Point of Interest System. It was very important that when the player finds an artifact,

their hard work is paid off with a satisfying and in-depth look at the artifact which is both visually pleasing and

educational.

An early prototype of the Artifact Interaction System.

The designers’ notes on the Player Movement System. I took this to heart

and used it as important feedback for future iterations of the system.

Testing multiple sizes of artifacts to work with the system

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

12

The Artifact Interaction script in the

Unity Editor. I ensured that

designers could modify the

appropriate values

Receiving feedback from members of

the team on multiple variants of UI

to determine which looks best

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

13

Development Work

Player Movement

The player can’t achieve anything without being able to move within the environment, so the Player

Movement System was the first mechanic I worked on. It was important for this mechanic to work as well as

possible, as it is the foundation for the rest of the game.

Physics vs Translation

Initially I created the script to take in the W, A, S and D keys and depending on the key, a force would be

applied to a Rigidbody component that is attached to the player. For a long time, this was used for the player

movement, but using physics is both more computationally expensive and unreliable. When the forces clash

with mathematical movement, the two movements clash and create a noticeable stutter when the player is

moving. I believed that using physics to move the player would make the movement feel smoother, but due to

these issues, it turned out to be the opposite.

Dealing with Verticality

One of the hardest challenges to deal with when developing the Player Movement System was how it dealt

with the slab system and getting stuck in holes. Walking around the level was fine until the player began

digging. If they walked into a hole, there would be no way to exit it. At this point the Player Movement System

was not developed to deal with any form of verticality – an oversight on my behalf. There were multiple ways I

investigated fixing this.

An early iteration of the PlayerMovement script. FixedUpdate() and physics

forced were used.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

14

As a temporary workaround for being able to leave holes I added jumping to the Player Movement System.

The player could press the Spacebar to add a force based impulse upwards. This was implemented while the

system was still using physics-based movement.

This method of escaping holes dug in the site was not at all satisfying and felt forced and out of place. It was

useful for testing the game in development as there was no other way to escape holes.

My next experiment to solve the climbing issue was creating a function that detects a slab in front of the

player’s feet and uses the Unity Lerp function to transport the player to above that slab. The idea was that this

would allow the player to “climb” slabs as if they were using a ladder – pressing the jump button would

transport them to the ground level. This method quickly introduced many issues – it would not always

correctly detect the top slab, resulting in the game trying to pull the player into the area where the slabs are.

The code for jumping in the player movement script. This was eventually replaced

Diagram representing how the ‘climbing’ function should ideally perform vs

how it’s performed.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

15

Replacing the ‘Lerp’ with a simple translation in position technically worked but the player snapping to the

correct position was disorienting and broke the immersive feeling of the game. This attempt at solving the

issue created many more problems than it resolved so I decided the discontinue development and

experimentation with this function.

The CharacterController component

I decided to test out the Unity inbuilt component, the CharacterController. I chose this option as a last resort

as I would have much preferred to create my own climbing system that I could fully understand, tweak and

experiment with, but in the end, it solved the climbing issue. I decided to use the CharacterController

component as it supported smooth player movement but most importantly it had built in functionality for

supporting slopes and verticality. After implementing the CharacterController and tweaking it appropriately, it

worked fantastically with the slab system, with the player being able to walk up and down the slabs as if they

were steps (Player can climb 5 slabs at a time). The CharacterController Move() function was now how the

PlayerMovement script moved the player.

The function that I implemented for “climbing” slabs.

The Character Controller component on the player.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

16

Dealing with gravity

The fact that the player movement was not physics based meant that there was no gravity applied to the

player. This meant that the player couldn’t walk into the dug-up areas they had created. A function I created

named IsGrounded() sends a raycast from where the player’s foot would be, and this raycast detects if there

is a collider directly below it. If a collider is detected, the function returns true, else false. Within the Update()

function, if the IsGrounded() function returns false, a constant gravity is applied to the CharacterController in

the y direction. There is no simulation of gravitational acceleration, but due to the game’s level not being too

vertical, it wasn’t very noticeable.

*

There were some issues with the player falling through the slabs and being stuck within them – this was due to

the character controller searching for steps and the slab system confusing it. Tweaking the values seemed to

iron this issue out for the most part but I believe it still occasionally happens when trying to be replicated.

The IsGrounded() function.

Gravity being applied to the player if they aren’t grounded.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

17

Artifact Interaction

Resident Evil 7 (2017) and Tomb Raider (2013) were the main references I used when creating the Artifact

Interaction System. The artifact had to come close enough to the screen for the player to be able to see it in

full detail and appreciate the models created by our artists.

Controls

As a team we decided that this mechanic would use the WASD controls to rotate the artifact, rather than using

the mouse. Being able to drag the artifact to rotate it with a mouse would be great, but for the time limit and

scope of our game, we didn’t see any point in putting valuable time into a small change that could be

achieved with a different methods.

Overview of system

The Artifact Interaction System allows for the player to pick up the artifact, which brings the artifact model

up in front of the player and displays a journal page which the Points of Interests are “written” to. Points of

Interest are areas placed on the model of the artifact which contain certain information about the artifact in

context of where it is placed. The player must rotate the artifact to find each individual point of interest, and

they can proceed once they have uncovered every point of interest on the artifact.

One of our programmers, Ben, created the initial system which allowed for the player to look at an artifact and

commence the artifact interaction. I continued the system from then onwards.

An example of a Point of Interest on an artifact.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

18

Finding an artifact

A raycast is fired directly from the centre of the player camera in the direction they are facing, to search for

any objects in the centre of the screen – in this case the raycast is looking for artifacts. When the raycast finds

an artifact within the specified maximum distance, an icon of a hand is displayed. This shows the player that

they can interact with this artifact. This hand went through a few iterations, eventually including a small “E”

letter to show the player which button they must press to commence Artifact Interaction. An animation was

added so that the hand fades in – this was a small but important detail to give the game the feeling of polish.

A function named SendRaycast() within the ArtifactInteraction script fires a raycast from the centre of the

screen, and it searches for any GameObjects marked “Interactable”. Every artifact within our game is in the

“Interactable” layer within the Unity layer system – if an artifact is being looked at directly by the player, the

function returns a reference to the found artifact, otherwise it returns null.

The function SearchForArtifact() is called every update if an artifact is not currently being interacted with. It

calls the function SendRaycast() which returns an artifact if it is seen by the raycast. If an artifact is found and

the player presses the Interaction Key (bound to ‘E’ in the final game), the function EnterInteraction() is

called.

Multiple iterations of the artifact interaction prompt.

The function SendRaycast() returns any artifacts found by a raycast from the player camera

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

19

Entering Interaction

The EnterInteraction() function effectively ensures that the UI and player controls are changed so that artifact

interaction works without flaws and is uninterrupted by other scripts. I created this function early in the

development of the game and have learnt a lot since – I didn’t revisit this function as it was too interconnected

with other scripts midway through development.

If I could revisit this script, I would introduce a game-wide event system and scriptable objects to hold certain

values so that changing “modes” in the game is clear and simple, and the scripts don’t depend on each other.

The SearchForArtifact() function determines if the requirements are met to enter

the interaction mode

The SearchForArtifact() function determines if the requirements are met to enter

the interaction mode

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

20

Once the artifact has been “interacted” with, it moves to a point in front of the player. There were many ways

to create this movement – snapping, translating or ”lerping”.

I decided to use lerping (linear interpolation) over the other two methods – this is due to the smooth change

in speed it provides, rather than a constant speed or sudden change in position. The artifact stops lerping as

soon as it reaches its target destination.

Rotating an artifact

The most challenging part of making the Artifact Interaction System was the rotation of the artifact. I had

dealt with Quaternions, Euler angles and general rotation qualms when I was doing the Green Game Jam in

November. The rotation of the artifact has acceleration so that it feels smooth, but this time I faced the issue

of decelerating the rotation after the player releases the key.

The destination of the artifact when it moves towards a position in front of the player.

Behind the player (left) and in front (right)

The DetermineLerp() function that determines if the artifact has reached its

destination.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

21

I had to keep track of whether the player is pressing a key to rotate the artifact, the rotation direction at the

point that the player releases the key, and when the artifact has fully stopped rotating. It was a challenge I did

not foresee but managed to overcome to make a very smooth, polished rotation system that I am proud of.

The RotateArtifact() script, different elements of the rotation had to be separated into multiple

functions

Development of the Artifact Interaction System over time, from wireframe to

final look.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

22

Points of Interest

The next step of the Artifact Interaction System was adding Points of Interest.

Each point of interest is a GameObject that is a child of an empty GameObject named “PointsOfInterest” which

is a child of the artifact. These GameObjects have a Box Collider attached to them which fires a raycast in the

direction the GameObject is facing in the Z axis. This is controlled by the script PointOfInterest which is

attached to the GameObject. If the raycast finds the sphere collider of the GameObject “Head” that is a child

of the player, it will display the Mesh Rendered text that is a child of the PointOfInterest object (this text is

disabled by default). This results in text being revealed as the player rotates the artifact and finds new points

of interest. The text always remains upright when the artifact is being rotated.

A small golden sphere was added to each point of interest. These spheres are visible as soon as the player

picks up the artifact. This was a design decision from midway through development, which made it easier for

the player to find points of interest without randomly rotating artifacts.

The panel to the right of the artifact is a notebook for the Point of Interest information to be written onto –

the function AppendArtifactDescription() gets a reference of the ArtifactCanvas - the canvas which holds the

panel, and adds the text held by the point of interest to it.

The AppendArtifactDescription() function within the script PointOfInterest script

The Update() function of the PointOfInterest script. This calls the SendRaycast() function to

check if the player’s head is seen.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

23

The Drone

When brainstorming ideas for the teaser trailer, I decided that for some of our shots it would be wise to create

a custom “Cinematic Camera” that can fly around and pan across the scene smoothly. I created this mechanic

and decided that it would be a perfect fit for one of our Research Methods - perks that can be invested in for

equipment and assistance for the dig site. I brought it up to the designers and the rest of the team and they

agreed that it would be a perfect fit for the game.

Drone Movement

The Drone moves using Unity’s in-built physics and uses the WASD keys for moving in the X and Y directions.

Space and Shift are used to move up and down respectively, and the Mouse is used to look around. These

controls changed when we decided to remove the ability to change elevation. The decision to remove

changing the altitude was made due to the player being able to crash the drone into the ground or trees,

which resulted in messy physics.

The script DroneCamera has a FixedUpdate() function for manipulating physics and applies certain forces to

the Drone’s Rigidbody depending on player input. The movement of the mouse rotates the Drone’s yaw, but

the Drone’s camera moves independently - the pitch axis changes if the player moves the mouse up or down.

The camera rotation is clamped between a minimum and maximum value – this means that while controlling

the Drone, the player can look straight down and straight up, but no angle beyond that, which would result in

the camera rolling upside down. The Drone has a Rigidbody component which is unaffected by gravity,

allowing the Drone to keep its height in the air, akin to that of a real drone.

The two update functions that determine the force applied to the Drone and its rotation

based on player input.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

24

I got a 3D model of a drone from the online website TurboSquid and animated the blades to spin. It is unlikely

that the player will see the Drone but I thought it would be a nice little touch – I made the animation 4 frames

long so that the cost is negligible in terms of processing power.

The Drone Controller

When the player presses the button to bring up the Drone (Initially ‘L’, now the number 3), a remote controller

is raised from below the viewport, which displays a video feed of the Drone’s camera. This is done by creating

a Render Texture that the Drone’s camera outputs directly to. The camera also has a couple of post-processing

effects such as film grain, lens distortion and colour grading to make the Drone’s camera feed appear to be a

video stream.

I originally created the model of the Drone Controller using simple shapes, and over time it was developed

until our prop artist Csenge provided a lovely new model for the final Drone Controller.

The Drone model in its untextured, initial form.

The Drone model after texturing and animation.

The Drone Controller iterating over time – the bottom right image is of Csenge’s Drone

Controller Model

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

25

When the Drone Controller is equipped, the Drone prefab is instantiated – this means that the Drone does not

exist until the Drone Controller is equipped. When the Drone Controller is unequipped, the Drone is

destroyed. This aids performance as it removes a second camera from the scene.

As the Drone was being developed, we discussed the idea of a “battery” system, where the Player had a

limited amount of time to use the Drone within the level. I raised the point that this would be limiting in terms

of the “fun factor” of the game and emphasised that these aspects of the game should not be time-limited, as

the game is foremost an educational game where people can learn at their own pace.

Drone Signal

As a method of limiting the drone from moving too far from the centre of the level, I added functionality to

the DroneCamera script to check this distance. The distance the drone is from the maximum set distance is

calculated as a percentage – for example if the Drone was 80% distance it is near the maximum distance from

the centre of the level. Post-processing effects change and intensify depending on the percentage – the

further the player gets, the grainier and more desaturated the screen becomes, representing signal loss. The

idea of the Drone having a signal was inspired by other games such as Watch Dogs 2 (2016) and Call of Duty:

Warzone (2020) – both games use drones that are limited by their signal distance.

The DroneSignal() function that determines the Drone’s distance from the centre of the

level

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

26

If the Drone reaches the maximum distance, the function LostSignal() is called. This function stops the player

from being able to control the drone and alters the Rigidbody values of this instance of the Drone to make it

plummet towards the ground. After a couple of seconds of crashing, the Drone is destroyed, and the Drone

Controller is unequipped. If the player re-equips the Controller, the Drone is instantiated once again.

Artifact Detection

For the first couple of months of development, we were using a tool named the “Artifact Detector” created

by our programmer, Ben. This tool would scan below the earth and find artifacts directly below the player,

showing how deep the object is in metres on its small screen. The mechanic was very well made, but the team

decided that it was too “powerful” a tool for the player to wield and would remove a lot of time and strategy

from the game. At this time the Drone didn’t have a purpose beyond being able to see everything from an

advantage, so we saw a situation where we could provide vague locations of artifacts whilst giving the Drone a

proper purpose.

The LostSignal() function that “crashes” the Drone and prevents the Player from continuing

to fly out of the distance limit

The Artifact Detector that was once an important part of the game.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

27

Each Artifact has a child object named “ArtifactArea” which holds a sphere collider component, offset by a

random amount on the x and y axis so it isn’t centred on the artifact. The function SearchForArtifactAreas()

within DroneCamera searches through each found ArtifactArea and checks if it is on screen – if so, a sonar-

like beeping sound is played, and an object is set to active which animates, representing an expanding circle

denoting the rough location of an artifact. If many artifacts are seen on-screen, there are many of these circles

displayed.

Drone Audio

The Drone holds an AudioSource component that plays a looping sound when created. I altered the

AudioSource component to present the sound in a 3D range – when the player deploys the Drone, they can

hear it flying above them.

Near the end of development, a Cinematic Camera was created based on the drone. This allowed me to make

landscape shots for the teaser trailer.

The SearchForArtifactAreas() function which determines which artifacts are within the

bounds of the screen.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

28

Animating the Tools

As our 3D artists specialise in environment and prop assets, they couldn’t provide animations for the game.

We designed the game to be animation-light to compensate for this. Due to my moderate experience in using

the Unity in-engine animator, I decided to take on the role of animator for UI and tools.

The UI animations are simple – if the UI element is non-diegetic, it appears by fading and scaling in, as if from

nowhere. If the UI element is diegetic like the Journal, it pans up from the bottom of the screen, as if the

player has pulled the Journal out of their pocket. It was important to differentiate the diegetic and non-

diegetic UI, so that the player would understand what belongs in the world of the game, and what is made

simply to assist and guide the player through non-diegetic means.

When animating the tools, I had to consider creating animations for equipping the tools, unequipping them,

the player being idle, walking, digging and failing to dig. The Unity animator helped a lot with blending these

animations together.

The animation tree for the Shovel

The keyframes for the Shovel digging animation – they manipulate only the position and rotation

of the model

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

29

As someone who’s relatively inexperienced in animation, I looked at the games Overwatch (2016) and

Firewatch (2016) for inspiration. Due to the first-person perspective in both games, they use the animations of

the characters’ hands, tools or weapons to convey both character and motion.

I based the digging animations of the Trowel and the Shovel on videos found on YouTube of archaeological

excavation, to make it as realistic to the process as I can. I refined the animations and their transitions over

time to be more accurate and responsive – I removed the “unequip” animation as a way of speeding up the

changing of tools. I timed the animations so that they were synced with our sound effects. Working with Ben’s

ToolManager script, I added the animations and sounds into the appropriate functions.

The character “Junkrat” from Overwatch (2016) – their homemade bomb launcher almost falls apart

with every step as individual elements of the weapon bounce and shake. The bob of the weapon

reflects Junkrat’s limp due to his wooden leg.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

30

The Specialist Page

After the player has viewed every Point of Interest on an artifact, they can proceed to the Specialist Page. This

page allows the player to select a certain “specialist” which the artifact is sent to for analysis. If their

specialisation matches the type or era of the artifact (for example Iron Age or Pottery), you receive bonuses to

your reputation – this means that it is important to try to send the artifact to the correct specialist.

The initial design for the Specialist Page contained only three specialists, but by the end we had four. I pushed

for a change to the design to allow for a more modular way of selecting specialists whilst giving the UI more

space to “breathe”.

Changing the Design

The initial layout of the Specialist Page – wireframe (left), in game (right).

My rough design of the new left page (left) and the revised wireframe (right)

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

31

Functionality

Our programmer, James, worked with the currency aspect of this page. The left page is linked to scriptable

objects that hold information on each specialist, making it easy to add as many specialists as needed. The text

on the right page is hard coded apart from where it denotes the site name, the specialist’s type and era, and

the player’s investment. I decided to make these “keywords” highlighted in red and orange. Red represents

eras, the current site and finance. Orange represents the type of artifact. This text colouring is reflected

throughout the level.

The new design in-game

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

32

The Journal

Creating the Journal

I created the Journal by making a new Canvas element, which every element of the Journal would be stored

under. There are 6 main elements of the Journal – the Tab System, the Inventory Page, the Catalogue Page,

the Info Page and the Settings Page. Each element was self-contained and held different objects and scripts

depending on the function of that page or system.

The Tab System

We needed to provide the player with a means of navigating the pages of the Journal, so I created the Tab

System. The Tab System allows the player to click “tabs” which are like bookmarks - clicking these tabs will

open the designated page. When initially creating the tabs, the tabs always appeared to look like they were on

the current page:

This looked somewhat strange and didn’t make sense for the Journal, so I designed a system where all the

tabs are shown, but behind the page sprite so they looked like they were on another page. If a tab is selected,

their associated front tab is activated, and all other front tabs are deactivated. This gives the effect that only

the tab of the current page is at the front.

The hierarchy of the Journal

The original look of the tabs without the implementation of Front Tabs and Back Tabs

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

33

The Inventory Page

The original design and wireframe of the Inventory Page was made to accommodate the Artifact Detector as

well as the Trowel and Shovel, but as this mechanic was removed, the design had to change to remove this

element.

The two icons on the left page are buttons, and pressing these buttons set the text on the right page to the

strings stored within two Scriptable Objects named “TrowelInfo” and “ShovelInfo”. If more tools were added to

the game, this method means that it would be very simple to add more buttons and entries.

As the Inventory Page is

being viewed, the Inventory

Tab is represented as being

at the front - you can see the

tape on the current page.

The hierarchy of the Tab System. The

“Page” object in the middle holds the sprite

of the page and it’s binding.

The original wireframe and final design – the Artifact Detector icon is gone and the Trowel and Shovel

are no longer offset from each other

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

34

The Information Page

The Information Page holds all the educational info about archaeological dig practices, the eras that the

artifacts could come from, and their type. The player can use this page as a reference for understanding where

and when an artifact could come from.

The Dig Practices on the left page are entirely static as they don’t change throughout the game. The right

page contains different information depending on the selected artifact type or era. It was originally static too,

and all the information was stored on the page, but it was far too cramped. Ben and I discussed ways of

changing this:

(top left) The right page of the Information Page – as you can see, this initially showed all the eras and

artifact “functions” on the same page, resulting in a cramped area of text.

Ben and I made many designs to explore the best way of presenting the artifact information in a clean and

interesting fashion

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

35

The Site Page

The Site Page is very simple – It displays the name and information of the site on the left page, and an image

of the site map on the right page. This page is linked to a Scriptable Object named “SiteInfoSO”, which

contains all the information of the site, including its map image. If we made more levels, this page would

change to fit the current dig site information.

The final design of the information page – the player can switch through each era and type of artifact

which reveals different information. The text is displayed over white lined paper, increasing legibility.

The final version of the Map Page

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

36

Implementing settings into the Settings Page

James created the initial Settings Page using my system and added two buttons for the player to exit to the

main menu, or to exit to the desktop. I added the graphics settings, the “show tutorial” toggle and the “I’m

stuck” button which is linked to Ben’s ResetPosition script.

Game Mode System

Within the level of the game there are 3 “modes”: The Player mode, the Drone mode and the Journal mode.

These modes use different inputs and change many aspects of the game, so I needed to create a script that

managed the different states and changes. I created the ChangeMode script to manage these states.

The final version of the Settings Page

Functions within the ChangeMode script that change aspects of the game depending on

the current “mode” that is selected

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

37

The Popup System

Types of Popups

We needed to guide the player through the level of the game with a tutorial, so I created a Popup System to

be able to display information to the player in different ways.

There are 4 different types of Popups:

Window Popups display in the centre of the screen and pause the game. A message is displayed within the

window with an “OK” button that closes the Popups and resumes the game when pressed.

Passive Popups can be displayed anywhere on the screen for a specified amount of time. They don’t pause

the game.

Large Passive Popups work functionally the same as Passive Popups but are larger so that they can

accommodate more information if needed.

Confirmation Popups are like Window Popups – they display in the centre of the screen and pause the

game. The difference is that the player has two options: “Yes“ and “No”. Pressing “Yes” executes the function

that is stored within the popups, and “No” simply closes the popup without calling any function. This means

that if the player makes an important decision, the game asks them for confirmation.

The function SwitchGameMode() changes the mode depending on the Enumerator “GameMode” which

is changed from other scripts.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

38

A prototype of the Passive Popup

An example of a Passive Popup that notifies the player that an artifact has been analysed without

interrupting gameplay.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

39

A Window Popup that displays information and pauses the game, resuming it once the player has

pressed the “OK” button.

A Confirmation Popup that asks if the player is sure they want to end the level and visit the recreation

of the dig site in the past.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

40

The Queue System

I created a queue system that stores pending Popups in a List data structure. This means that if many Popups

are called at the same time, they display one after the other, rather than all at once. The Popup System is very

flexible due to this and works very well with the rest of the scripts within the game.

A guide I sent to the team’s Discord chat showing them how to create any type of Popup from any

script.

The CreateWindowPopup() function in the script PopupUI. It adds the Popup to the queue if a Popup is

currently being displayed, otherwise it pauses the game and places the Popup in the appropriate place and

calls the next Popup in the queue if there is one.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

41

Pausing the Game

I created a script called PauseGame which disables any action the player can take until the game is un-

paused. It sets the game’s timescale to 0, meaning that no time passes, and no code linked to Delta time is

executed. This function can be called from other scripts and is used for elements of UI such as the Journal or

Window Popups. The player camera’s depth-of-field post-processing is also controlled in this script to blur the

background.

The Pause() function of the script PauseGame. This function is used by many other scripts.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

42

Altering the Slab System

Improving the Top Layer

Our Dig Site and its generation system was for the most part created by our programmer, Ben. I made some

additions to it to add some visual flourish to the game.

We felt that the top layer of dirt on the dig site seemed very unnatural and flat, so we investigated ways of

adding “texture” to it.

Ben investigated adding heightmaps into the Dig Site Generation System, providing some varied levels

of slabs. I felt this wasn’t too visually appealing but was a step in the right direction.

I altered the functionality of the Dig Site Generation System so that the top layer has a random chance

of using “bumpy” models of the slab that I created with Blender. This added some subtle, organic

texture to the dig site

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

43

Highlighting Slabs

I also altered Ben’s DestroyBlock script so that if a slab can be dug, it is highlighted. This is a quality of life

improvement to indicate to the player what they can and can’t dig. I experimented with different visuals for

the highlight, including showing the current tool within the highlight texture.

I also animated the slabs so that they “erode” as you dig them, levelling down until they disappear. This was

part of our game for a very long time, but after revisiting it, we decided that it was somewhat unsatisfying and

didn’t work well when using the Shovel, as only the top slab would animate, yet the two slabs below would

also disappear.

Digging Particles

I added a Particle System to the slab prefab which animated dust clouds as the player digs it. The particle

object is set to disabled and is only enabled once the slab is being dug – this saved a lot of performance.

Dig Progress Indicator

Since there was a set duration that it takes to dig with the Trowel and Shovel, I decided to make a UI element

that represents this duration in a simple and slick style, which would provide feedback for the player without

ruining the immersion of digging. I created a 360-degree slider that wraps around the reticle in the centre of

the screen. This circle completes when the slab has been dug.

Different versions of the slabs being highlighted – after asking the team we decided to stick with the version

on the right

The dig progress indicator in the centre of the screen.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

44

Blender Rocks

In my free time I decided to follow a tutorial to create some simple rocks in the 3D modelling software,

Blender. As a placeholder, I put these rocks in our environment, not intending for them to be in the final game.

When our environment artist, Kelly, was putting together her assets in-engine, she decided to use these rocks

near the entrance to the settlement.

Main Menu

The Main Menu has three options, “Start Game”, “Options” and “Exit”. Pressing “Start Game” takes the player

to the Map Screen. “Options” opens a panel where the player can select graphics settings and can choose to

disable or enable the tutorials. “Exit” closes the application.

The initial visual of the Main Menu was very simple and empty, but over time I iterated it to carry the visual

aesthetic of the rest of the game.

Some simple rocks made in Blender

The rocks in-game

The Main Menu that James created was

functional but lacked aesthetic.

My first iteration of the Main Menu that used the

Journal aesthetic.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

45

Improving the Map

I modified James’ MapMovement script to have linear movement as opposed to constant. Previously the

player would move their cursor to the edge of the screen and the Map would move suddenly in that direction.

To give the player more control, I modified the code so that the speed was greater the closer the mouse is to

the edge of the screen. This choice was inspired from many games with a similar panning system such as The

Sims 3 (2009) or Sid Meier's Civilization V (2010).

An overhaul of the Main Menu – animations were

included for visual flourish.

The camera pans onto the desk to reveal the title

and buttons.

The final version of the Main Menu.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

46

Occlusion Culling and Lighting

I did a lot of experimentation and tweaking with Unity’s Lighting and Post-Processing settings to improve the

overall visual look. I added fog to give the game more atmosphere and experimented with particle systems

to add dust particles to the air, although I decided to remove this to aid performance.

I set up Occlusion Culling so that the slabs within the dig site are only rendered if they are visible to the

player. This greatly helped performance as it ensured that the game was only rendering what the player

needed to see at the time.

Creation and Modification of Terrain

I created the initial terrain for the dig site on the hill as a placeholder, and our environment artist, Kelly,

created a much better version of the terrain which I modified to accommodate the dig site.

A screenshot of the dig site. You can see the fog on the hills.

The early terrain made by me.

I had to create a square hole in the top of the hill to

accommodate the dig site area, which would populate

the hole with slabs.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

47

AudioManager

I created a script named AudioManager that handles each audio clip within the level. It is a singleton script,

meaning that there is a single instance of it that can be accessed easily by any other script. Another script can

simply call a function within this script and the associated sound will play. This was very useful for providing a

main hub that any script can refer to for playing sound effects.

The Trailer

I gathered “B-roll” footage for the trailer with hidden UI, footage from the cinematic camera in the present,

and footage from the cinematic camera in the past. Adobe Premiere Pro was used to cut together the footage,

and the shots were planned out by myself and Robert using a Google Doc to note down each sequence of the

trailer. I waited for enough assets to be in the game to make the trailer, but this was very late, and I ended up

having to edit it quickly. I would have preferred to have had more time to improve the trailer with better

footage in order to effectively promote the game.

The trailer script created by Robert and me.

Ollie Hall 1700066 DES310 Portfolio – ‘Uncovered’ by Red Ink Team 10

48

Conclusion

Contributing to the development of 'Uncovered' for the Society of Antiquaries of Scotland has been an

incredible learning experience. I feel that my skills in programming, design and working within a team have

greatly improved since we began development in January. Overall, I am very happy with what we managed to

achieve within a limited timescale. If asked to develop the game further, I would enjoy the challenge of fine

tuning many of the features we created, and I look forward to other future collaborative projects.

References

- Minecraft. 2011. [disk]. Microsoft Windows, Mac OSX, Linux. Mojang.

- Resident Evil 7: Biohazard. 2017. [disk]. Microsoft Windows, PlayStation 4, Xbox One, Nintendo Switch.

Capcom.

- Tomb Raider. 2013. [disk]. Microsoft Windows, PlayStation 3, Xbox 360. Crystal Dynamics.

- Watch Dogs 2. 2016. [disk]. Microsoft Windows, PlayStation 4, Xbox One.

- Call of Duty: Warzone. 2020. [disk]. Microsoft Windows, PlayStation 4, Xbox One. Infinity Ward.

- Overwatch. 2016. [disk]. Microsoft Windows, PlayStation 4, Xbox One. Blizzard Entertainment.

- The Elder Scrolls IV: Oblivion. 2006. [disk]. Microsoft Windows, PlayStation 3, Xbox 360. Bethesda

Softworks.

- Uncharted 4: A Thief’s End. 2017. [disk]. PlayStation 4. Naughty Dog.

- Jason Weinmann. [online]. Available from https://www.youtube.com/channel/UCX_b3NNQN5bzExm-22-

NVVg.

- Sebastian Lague. [online]. Available from https://www.youtube.com/user/Cercopithecan.

- Firewatch. 2016. [disk]. Microsoft Windows, PlayStation 4, Xbox One, Nintendo Switch. Campo Santo.

- The Sims 3. 2009. [disk]. Microsoft Windows, PlayStation 3, Xbox 360. Maxis.

- Sid Meier’s Civilisation V. 2010. [disk]. Microsoft Windows, OS X, Linux. Firaxis Games.

https://www.youtube.com/user/Cercopithecan

